ALGEBRAIC MODELS FOR MEASURE PRESERVING TRANSFORMATIONS

BY N. DINCULEANU AND C. FOIAŞ

1. **Introduction.** The purpose of this paper is to study measure preserving transformations T on probability measure spaces (X, Σ, μ) by means of algebraic models (Γ, U, φ) (see Definitions 1 and 2).

The results obtained here contain those obtained in [3] concerning algebraic models (Γ, φ) of measure spaces (X, Σ, μ) .

Each transformation possesses algebraic models and conversely every algebraic system is a model for a certain transformation (Theorem 2). Algebraic models determine transformations uniquely up to a conjugacy (Theorem 1).

Transformations with discrete models (see Definition 3) are uniquely determined by (Γ, U) (Theorem 3). Such transformations are characterized by the existence of an orthonormal basis $\Gamma' \subset L^2(\mu)$ of functions $|f| \equiv 1$, which is also a multiplicative group, such that $U_T\Gamma' \subset C \cdot \Gamma'$ (direct product), where C is the circle group (Theorem 5). In certain cases, conjugacy does no more involve U either (Theorem 4). Continuous automorphisms and rotations on an abelian compact group—equipped with Haar measure—are examples of transformations with discrete model (Corollary of Theorem 5), and in fact, every *invertible* transformation with discrete model is a superposition of an automorphism and a rotation (Theorem 6).

The class of transformations with discrete models contains the transformations with quasi-discrete spectrum (see Abramov [1]) and the transformations with discrete spectrum (see Halmos [5]). Necessary and sufficient conditions are given for algebraic systems in order to be models for transformations with quasi-discrete spectrum (Theorem 10) or with discrete spectrum (Theorem 11). We mention also Theorem 12 which gives necessary and sufficient conditions in order that $\Gamma_1 = \Gamma_{\infty}$.

In Theorems 7 and 9, ergodicity of transformations is characterized by means of algebraic models.

- 2. **Preliminaries.** Let (X, Σ, μ) be a probability measure space and $T: X \to X$ a measure preserving transformation.
- (1) We denote by $\Gamma(\mu)$ the multiplicative group of the (equivalence classes of) functions $f \in L^{\infty}(\mu)$ with $|f| \equiv 1$, by φ_{μ} the function of positive type on $\Gamma(\mu)$ defined by

$$\varphi_{\mu}(f) = \int f d\mu, \quad \text{for } f \in \Gamma(\mu)$$

and by U_T the linear isometry defined on $L^2(\mu)$ by $U_T f = f \circ T$. Then [3, Proposition 1],

$$\varphi_u(f) = 1$$
 if and only if $f = 1$

and U_T (or, more precisely, the restriction of U_T to $\Gamma(\mu)$) is an *injective homomorphism* of $\Gamma(\mu)$ into itself, such that

 $U_{\tau}c = c$, for $c \in C$ (the circle group)

and

$$\varphi_u(U_T f) = \varphi_u(f), \text{ for } f \in \Gamma(\mu).$$

If T is invertible, then U_T is an automorphism of $\Gamma(\mu)$.

(2) For every function $f \in \Gamma(\mu)$ put

$$w_T(f) = U_T f \cdot \bar{f}$$
.

Then w_T is a homomorphism of $\Gamma(\mu)$ into itself and we have

$$U_T f = w_T(f) \cdot f$$
.

 $w_T(f)$ is called the generalized proper value corresponding to the generalized proper function f of U_T .

A subgroup $\Gamma \subset \Gamma(\mu)$ is invariant under U_T (that is $U_T \Gamma \subset \Gamma$) if and only if Γ is invariant under w_T (that is $w_T \Gamma \subset \Gamma$).

(3) For every integer $n \ge 0$ put

$$\Gamma_n = \Gamma_n(T) = w_T^{-n}(C) = \{ f \in \Gamma(\mu); w_T^n(f) \in C \}.$$

In particular, $\Gamma_0 = C$ and Γ_1 is the set of the proper functions of U_T belonging to $\Gamma(\mu)$. Each Γ_n is a group invariant under U_T and $\Gamma_n \subset \Gamma_{n+1}$ for every n. The set

$$\Gamma_{\infty} = \Gamma_{\infty}(T) = \bigcup_{n=0}^{\infty} \Gamma_n$$

is also a subgroup of $\Gamma(\mu)$ invariant under U_T . Moreover, if $\Gamma \subset \Gamma(\mu)$ is a group such that

$$C \subseteq \Gamma$$
 and $w_{\overline{\tau}}^{-1}\Gamma = \Gamma$

then $\Gamma_{\infty} \subset \Gamma$. (In fact, for every *n* we have $w_T^{-n}(C) \subset w_T^{-n}\Gamma \subset \Gamma$).

In particular, if $\Gamma_{n+1} = \Gamma_n$ for some n, then $\Gamma_{\infty} = \Gamma_n$.

(4) For every integer $k \ge 0$, U_T^k is an injective homomorphism of $\Gamma(\mu)$ into itself and

$$\varphi_{\mu}(U_T^k f) = \varphi_{\mu}(f), \text{ for } f \in \Gamma(\mu).$$

If $\Gamma \subset \Gamma(\mu)$ is invariant under U_T , then Γ is invariant under U_T^k .

For every n we have

$$\Gamma_n(T) \subseteq \Gamma_n(T^k)$$

therefore

$$\Gamma_{\infty}(T) \subset \Gamma_{\infty}(T^k).$$

(5) Let Γ be an abelian group containing a subgroup C' of the circle group C, and suppose that $\Gamma = C' \cdot \Gamma'$ (direct product), where Γ' is a subgroup of Γ . Let further $U: \Gamma \to \Gamma$ be an injective homomorphism such that

$$Uc = c$$
, for $c \in C'$.

For every $\gamma \in \Gamma'$ we have $U\gamma \in \Gamma$, therefore, there exists a number $\rho(\gamma) \in C'$ and an element $V\gamma \in \Gamma'$ such that

$$U\gamma = \rho(\gamma)V\gamma$$
.

Then $\rho: \Gamma' \to C'$ is a homomorphism and $V: \Gamma' \to \Gamma'$ is an injective homomorphism. Moreover, for every n there exists a homomorphism $\rho_n: \Gamma' \to C'$ such that

$$U^n \gamma = \rho_n(\gamma) V^n \gamma$$
, for $\gamma \in \Gamma'$.

In particular, if $\Gamma \subset \Gamma(\mu)$ and $U = U_T$, then $V_{\gamma} = \gamma$ and $\rho(\gamma) = w_T(\gamma)$, for $\gamma \in \Gamma' \cap \Gamma_1(T)$.

Conversely, if $\rho: \Gamma' \to C'$ is a homomorphism and $V: \Gamma' \to \Gamma'$ is an injective homomorphism, then the equality

$$U(c\gamma) = c\rho(\gamma)V(\gamma)$$
, for $c \in C'$ and $\gamma \in \Gamma'$

defines an injective homomorphism $U: \Gamma \to \Gamma$ which satisfies

$$Uc = c$$
, for $c \in C'$

and

$$U\gamma = \rho(\gamma)V\gamma$$
, for $\gamma \in \Gamma'$.

(6) Let (X', Σ', μ') be a probability measure space and $T': X' \to X'$ a measure preserving transformation.

The transformations T and T' are conjugate (see [5, pp. 44-45]) if there exists a linear isometry

$$\phi: L^2(\mu) \to L^2(\mu')$$

such that

$$\phi L^2(\mu) = L^2(\mu'),$$

 $\phi(fg) = \phi f \cdot \phi g, \text{ for } f, g \in L^{\infty}(\mu)$

and

$$\phi U_T = U_{T'}\phi.$$

It follows then that $\phi L^{\infty}(\mu) = L^{\infty}(\mu')$ and

$$\|\phi f\|_{\infty} = \|f\|_{\infty}$$
, for $f \in L^{\infty}(\mu)$.

REMARK. To say that T and T' are conjugate means that the measures μ and μ' are conjugate (see [3, Definition 1]) by means of a linear isometry $\phi: L^2(\mu) \to L^2(\mu')$ which satisfies in addition the equality

$$\phi U_T = U_{T'} \phi.$$

The following proposition gives some conjugacy invariants connected to $\Gamma(\mu)$, U_T and ϕ_{μ} .

PROPOSITION 1. If T and T' are conjugate, then there exists an injective homomorphism $\phi: \Gamma(\mu) \to \Gamma(\mu')$ having the following properties:

- (i) $\phi \Gamma(\mu) = \Gamma(\mu')$;
- (ii) $\phi c = c$, for $c \in C$;
- (iii) If $\Gamma \subset \Gamma(\mu)$ generates $L^2(\mu)$, then $\phi \Gamma$ generates $L^2(\mu')$;
- (iv) If $\Gamma \subset \Gamma(\mu)$ is an orthonormal system in $L^2(\mu)$ then $\phi \Gamma$ is orthonormal in $L^2(\mu')$;
 - (v) $\phi \Gamma_n(T) = \Gamma_n(T')$ and $\phi \Gamma_{\infty}(T) = \Gamma_{\infty}(T')$;
 - (vi) $\varphi_{\mu}(f) = \varphi_{\mu'}(\phi f)$, for $f \in \Gamma(\mu)$;
 - (vii) $\phi U_T = U_{T'} \phi$ and $\phi w_T = w_{T'} \phi$.

In fact, if ϕ is a linear isometry of $L^2(\mu)$ onto $L^2(\mu')$ realizing the conjugacy between T and T', then the restriction of ϕ to $\Gamma(\mu)$, still denoted by ϕ , is the required isomorphism (see also [3, Proposition 2]).

REMARK. We shall see (corollary of Theorem 1) that, conversely, if ϕ is an isomorphism of $\Gamma(\mu)$ onto $\Gamma(\mu')$ satisfying conditions (vi) and (vii), then T and T' are conjugate.

3. Algebraic models. The considerations of the preceding section lead to the following

DEFINITION 1. A system (Γ, U, φ) consisting of an abelian group Γ with unit 1, an injective homomorphism $U: \Gamma \to \Gamma$ and a complex function of positive type φ on Γ such that $\varphi(\gamma) = 1$ if and only if $\gamma = 1$ and $\varphi(U\gamma) = \varphi(\gamma)$, for $\gamma \in \Gamma$, is called an algebraic ergodic system (a.e. system).

Two a.e. systems (Γ, U, φ) and (Γ', U', φ') are said to be isomorphic if there exists an isomorphism φ of Γ onto Γ' such that

$$\varphi(\gamma) = \varphi'(\phi\gamma), \text{ for } \gamma \in \Gamma$$

and

$$\phi U = U'\phi$$
.

If we define the homomorphisms $w: \Gamma \to \Gamma$ by

$$w(\gamma) = U\gamma \cdot \gamma^{-1}, \text{ for } \gamma \in \Gamma$$

and the homomorphism $w' \colon \Gamma' \to \Gamma'$ in a similar way, then condition $\phi U = U' \phi$ above is equivalent to condition $\phi w = w' \phi$.

EXAMPLE. If T is a measure preserving transformation on a probability measure space (X, Σ, μ) , then (C, U_T, φ_{μ}) and $(\Gamma(\mu), U_T, \varphi_{\mu})$ are a.e. systems. More generally, for every group $\Gamma \subset \Gamma(\mu)$ invariant under U_T , $(\Gamma, U_T, \varphi_{\mu})$ is an a.e. system.

We shall see (Theorem 2) that every a.e. system can be obtained in this way.

REMARKS. 1°. To say that (Γ, U, φ) is an a.e. system, means that (Γ, φ) is a measure system (see [3, Definition 2]) and that $U: \Gamma \to \Gamma$ is an injective homomorphism satisfying $\varphi(U\gamma) = \varphi(\gamma)$ for $\gamma \in \Gamma$. Then $(\Gamma, \varphi \circ U)$ is also a measure system. Moreover, if $U\Gamma = \Gamma$, then (Γ, φ) and $(\Gamma, \varphi \circ U)$ are isomorphic measure systems.

Conversely if (Γ, φ) and (Γ, φ') are isomorphic measure systems by means of an isomorphism $U: \Gamma \to \Gamma$, then (Γ, U, φ) is an a.e. system and $U\Gamma = \Gamma$.

2°. To say that two a.e. systems (Γ, U, φ) and (Γ', U', φ') are isomorphic, means that (Γ, φ) and (Γ', φ') are isomorphic measure systems, by means of an isomorphism $\phi \colon \Gamma \to \Gamma'$ which satisfies $\phi U = U' \phi$.

Conversely, if (Γ, φ) and (Γ', φ') are isomorphic measure systems, then taking $U: \Gamma \to \Gamma$ and $U': \Gamma' \to \Gamma'$ the identity mappings, the a.e. systems (Γ, U, φ) and (Γ', U', φ') are isomorphic.

3°. If (Γ, U, φ) is an a.e. system, then the set $C' = \{ \gamma \in \Gamma; |\varphi(\gamma)| = 1 \}$ is a group, and φ is an injective homomorphism of C' into the circle group C. If we identify an element $\gamma \in C'$ with the number $\varphi(\gamma) = c$, we have (see [3, corollary of Proposition 3])

$$\varphi(c\gamma) = c\varphi(\gamma)$$
, for $c \in C'$ and $\gamma \in \Gamma$.

Moreover,

$$Uc = c$$
, for $c \in C'$.

In fact, if $c \in C'$, then $\varphi(Uc) = \varphi(c) = c$, therefore $Uc \in C'$ and Uc = c. If C' is divisible, then there exists a group $\Gamma' \subseteq \Gamma$ such that

$$\Gamma = C' \cdot \Gamma'$$
 (direct product).

The a.e. system (Γ, U, φ) can be embedded in an a.e. system $(\Gamma_1, U_1, \varphi_1)$ such that

$$\{\gamma \in \Gamma_1; |\varphi_1(\gamma)| = 1\} = C$$

and then

$$\Gamma_1 = C \cdot \Gamma_1'$$
 (direct product).

In case $U\gamma = \gamma$ (or, equivalently, $w(\gamma) = 1$) implies $\gamma \in C$, the group Γ' can be precised:

PROPOSITION 2. Let (Γ, U, φ) be an a.e. system, let $C' = \{ \gamma \in \Gamma; \varphi(\gamma) \in C \}$ and $w(\gamma) = U\gamma \cdot \gamma^{-1}$, for $\gamma \in \Gamma$.

If C' is divisible (in particular if C'=C) and if $w(\gamma)=1$ implies $\gamma \in C'$, then every injective homomorphism $a \to \gamma_a$ of a group $G \subseteq w\Gamma$ into Γ such that $w(\gamma_a)=a$ for $a \in G$ (in particular the homomorphism $1 \to \gamma_1=1$ of $G=\{1\}$) can be extended to an injective homomorphism $a \to \gamma_a$ of $w\Gamma$ into Γ , such that $w(\gamma_a)=a$, for $a \in w\Gamma$.

If we put $\Gamma' = \{ \gamma_a : a \in w\Gamma \}$, then $\Gamma = C' \cdot \Gamma'$ (direct product).

The proof is similar to that given in [5, p. 46], for ergodic transformations with discrete spectrum.

For every $a \in w\Gamma$ choose $\mu_a \in \Gamma$ with $U\mu_a = a\mu_a$, that is $w(\mu_a) = a$. If $a \in G$ we take $\mu_a = \gamma_a$. We have

$$U\mu_{ab} = ab\mu_{ab}$$
 and $U\mu_a\mu_b = ab\mu_a\mu_b$

whence

$$w(\mu_{ab}) = w(\mu_a \mu_b) = ab.$$

By hypothesis, there exists a number $\gamma(a, b) \in C'$ such that

$$\mu_a\mu_b=\gamma(a,b)\mu_{ab}.$$

If $a, b \in G$, then $\gamma(a, b) = 1$. Consider the group $\{c\gamma_a; c \in C', a \in G\}$ and the homomorphism p of this group into C' defined by $p(c\gamma_a) = c$. We have, in particular, p(c) = c for $c \in C'$ and $p(\gamma_a) = 1$ for $a \in G$. Since C' is divisible, p can be extended to a homomorphism, still denoted by p, of $w\Gamma$ into C'.

If we now define

$$\gamma_a = \overline{p(\mu_a)}\mu_a$$
, for $a \in w\Gamma$

then the requirements of the proposition are fulfilled.

REMARK. Condition: $w(\gamma) = 1$ implies $\gamma \in C'$, is satisfied, for example, if $U = U_T$, where T is an *ergodic* transformation.

DEFINITION 2. Let (X, Σ, μ) be a probability measure space and $T: X \to X$ a measure preserving transformation. We say that an a.e. system (Γ, U, φ) is an algebraic model of the transformation T if there exists an injective homomorphism $J: \Gamma \to \Gamma(\mu)$ such that:

- (a) $J\Gamma$ generates $L^2(\mu)$;
- (b) $\varphi(\gamma) = \varphi_{\mu}(J\gamma)$, for $\gamma \in \Gamma$;
- (c) $JU = U_T J$.

It follows that if $\Gamma \subset \Gamma(\mu)$ is a group generating $L^2(\mu)$, and invariant under U_T , then $(\Gamma, U_T, \varphi_{\mu})$ is an algebraic model for T.

If (Γ, U, φ) is an algebraic model of T by means of an isomorphism J, then, identifying Γ and $J\Gamma$ we can consider that $\Gamma \subset \Gamma(\mu)$, $U = U_T$ and $\varphi = \varphi_{\mu}$.

If (Γ, U, φ) is an algebraic model of T, then T is invertible (that is $U_T L^2(\mu) = L^2(\mu)$) if and only if U is an automorphism of Γ (that is $U\Gamma = \Gamma$). In particular, a transformation T having $(\Gamma_1(T), U_T, \varphi_\mu)$ as algebraic model, is always invertible (since $U_T\Gamma_1 = \Gamma_1$).

REMARK. To say that (Γ, U, φ) is an algebraic model for T means that (Γ, φ) is an algebraic model for the measure μ (see [3, Definition 3]), by means of an isomorphism $J: \Gamma \to \Gamma(\mu)$ which satisfies, in addition, $JU = U_T J$.

Conversely, if (Γ, φ) is an algebraic model of the measure μ and if $U: \Gamma \to \Gamma$ is

the identity mapping, then (Γ, U, φ) is an algebraic model for the identity transformation $T: X \to X$.

Algebraic models determine the transformations uniquely up to a conjugacy:

THEOREM 1. Two measure preserving transformations are conjugate if and only if they possess isomorphic algebraic models.

Let T and T' be two measure preserving transformations on the probability measure spaces (X, Σ, μ) respectively (X', Σ', μ') .

If T and T' are conjugate, then from Proposition 1 we deduce that their algebraic models $(\Gamma(\mu), U_T, \varphi_{\mu})$ and $(\Gamma(\mu'), U_{T'}, \varphi_{\mu'})$ are isomorphic.

Conversely, suppose that T and T' possess isomorphic models (Γ, U, φ) respectively (Γ', U', φ') . We may consider $\Gamma \subset \Gamma(\mu)$, $U = U_T$, $\varphi = \varphi_{\mu}$ and $\Gamma' \subset \Gamma(\mu')$, $U' = U'_T$ and $\varphi' = \varphi_{\mu'}$.

If ϕ is an isomorphism of Γ onto Γ' such that

$$\varphi_{\mu} = \varphi_{\mu'} \circ \phi$$
 and $\phi U_T = U_{T'} \phi$

then (see [3, Theorem 2]), ϕ can be extended to a linear isometry $\phi: L^2(\mu) \to L^2(\mu')$ such that

$$\phi L^2(\mu) = L^2(\mu')$$
 and $\phi L^{\infty}(\mu) = L^{\infty}(\mu')$,

and

$$\phi(fg) = \phi f \cdot \phi g$$
, for $f, g \in L^{\infty}(\mu)$.

The equality

$$\phi U_T f = U_{T'} \phi f$$
, for $f \in \Gamma$

remains true first for linear combinations of functions of Γ and then for every $f \in L^2(\mu)$, so that T and T' are conjugate.

COROLLARY. The transformations T and T' are conjugate if and only if the a.e. systems $(\Gamma(\mu), U_T, \varphi_{\mu})$ and $(\Gamma(\mu'), U_{T'}, \varphi_{\mu'})$ are isomorphic.

The following theorem states that every a.e. system is an algebraic model for some transformation.

Theorem 2. Every a.e. system (Γ, U, φ) is an algebraic model for a continuous measure preserving homomorphism τ on an abelian compact group G equipped with a suitable regular Borel measure μ .

Moreover, if $U\Gamma = \Gamma$, then τ is an automorphism of G.

Consider on Γ the discrete topology and take $G = \Gamma^{\wedge}$. Let μ be the unique regular Borel measure on G such that (Bochner's theorem),

$$\varphi(\gamma) = \int \langle x, \gamma \rangle d\mu(x), \text{ for } \gamma \in \Gamma.$$

Then the mapping $J: \Gamma \to \Gamma(\mu)$ defined by

$$J_{\gamma} = \langle \cdot, \gamma \rangle$$
, for $\gamma \in \Gamma$

is an injective homomorphism, $J\Gamma$ generates $L^2(\mu)$ and

$$\varphi(\gamma) = \varphi_u(J\gamma), \text{ for } \gamma \in \Gamma.$$

We define now the mapping $\tau: G \to G$ by

$$\langle \tau x, \gamma \rangle = \langle x, U \gamma \rangle$$
, for $x \in G$ and $\gamma \in \Gamma$.

Then τ is a continuous homomorphism of G into itself, and

$$JU = U_rJ$$
.

If $\Gamma U = \Gamma$, then τ is injective and $\tau G = G$, therefore τ is an automorphism of G. It remains to prove that τ is measure preserving.

Consider the regular Borel measure ν defined on G by

$$\nu(A) = \mu(\tau^{-1}A)$$
, for every Borel set $A \subseteq G$.

Then for every $\gamma \in \Gamma$ we have

$$\varphi(\gamma) = \varphi(U\gamma) = \int \langle x, U\gamma \rangle \, d\mu(x) = \int \langle \tau x, \gamma \rangle \, d\mu(x) = \int \langle x, \gamma \rangle \, d\tilde{\nu}(x).$$

By the uniqueness of μ we deduce that $\mu = \nu$, therefore $\mu(\tau^{-1}A) = \mu(A)$, for every Borel set $A \subseteq G$ consequently τ is measure preserving.

REMARK. The proof of Theorem 2 was used in [4] to prove the following

COROLLARY. Every measure preserving transformation T on a probability measure space (X, Σ, μ) is conjugate to a continuous homomorphism τ on an abelian compact group G equipped with a suitable regular Borel measure. If T is invertible then τ is an automorphism of G.

4. Discrete algebraic models.

DEFINITION 3. An a.e. system (Γ, U, φ) is said to be discrete if $C \subset \Gamma$ and

$$\varphi(\gamma) = \gamma$$
, for $\gamma \in C$,
= 0, for $\gamma \notin C$.

REMARKS. 1°. An a.e. system (Γ, U, φ) is discrete if and only if (Γ, U^n, φ) is discrete.

2°. We have

$$Uc = c$$
, and $w(c) = 1$, for $c \in C$

where $w(\gamma) = U\gamma \cdot \gamma^{-1}$ for $\gamma \in \Gamma$ (see Remark 3 after Definition 1).

3°. Let (Γ, U, φ) be an a.e. system with $C \subset \Gamma$. Then $\Gamma = C \cdot \Gamma'$ (direct product) where Γ' is a subgroup of Γ . To say that (Γ, U, φ) is discrete, means that

$$\varphi(\gamma) = 1$$
 for $\gamma = 1$,
= 0 for $\gamma \in \Gamma'$, $\gamma \neq 1$.

4°. Let (Γ, U, φ) be an a.e. system such that

$$|\varphi(\gamma)| < 1$$
 implies $\varphi(\gamma) = 0$.

Then (Γ, U, φ) is "essentially" a discrete system. In fact we can consider (Γ, U, φ) as a model of a measure preserving transformation T on a probability measure space, and consider $\Gamma \subset \Gamma(\mu)$, $U = U_T$ and $\varphi = \varphi_{\mu}$. Consider then the group $\Gamma_1 = \{c\gamma; c \in C, \gamma \in \Gamma\}$; then $(\Gamma_1, U_T, \varphi_{\mu})$ is a discrete model of T and contains the initial model (Γ, U, φ) .

For a discrete system (Γ, U, φ) , the function φ is completely determined by Γ , so that the system itself is completely determined by (Γ, U) .

PROPOSITION 3. Let Γ be an abelian group containing C and let $U: \Gamma \to \Gamma$ be an injective homomorphism such that

$$Uc = c$$
, for $c \in C$.

If we define

$$\varphi(\gamma) = \gamma \quad \text{if } \gamma \in C,$$

= 0 \quad \text{if } \gamma \in C,

then (Γ, U, φ) is a discrete system.

In fact, φ is of positive type:

$$\sum_{i,j=1}^{n} \alpha_i \bar{\alpha}_j \varphi(\gamma_i \gamma_j^{-1}) = \sum_{\gamma_i \sim \gamma_j} \alpha_i \bar{\alpha}_j \varphi(\gamma_i \gamma_j^{-1}) = \sum_k \sum_{\gamma_i, \gamma_j \in C \gamma_k} \alpha_i \bar{\alpha}_j \varphi(\gamma_i \gamma_j^{-1})$$

$$= \sum_k \sum_{\gamma_i \in C \gamma_k} |\alpha_i \varphi(\gamma_i \gamma_k^{-1})|^2 \ge 0$$

where $\gamma_i \sim \gamma_j$ means $\gamma_i \gamma_j^{-1} \in C$ and $C\gamma_k$ the equivalence classes.

If $\gamma \in C$ then $U\gamma = \gamma$, therefore

$$\varphi(U\gamma) = \varphi(\gamma);$$

if $\gamma \notin C$, then $U\gamma \notin C$ (since U is injective), therefore $\varphi(\gamma) = 0$ and $\varphi(U\gamma) = 0$, consequently

$$\varphi(U\gamma) = \varphi(\gamma).$$

Moreover, $\varphi(\gamma) = 1$, if and only if $\gamma = 1$, so that (Γ, U, φ) is a discrete system.

For discrete systems, isomorphism does no more involve functions of positive type.

THEOREM 3. Two discrete systems (Γ, U, φ) and (Γ', U', φ') are isomorphic if and only if there exists an isomorphism φ of Γ onto Γ' such that

$$\phi c = c$$
, for $c \in C$

and

$$\phi U = U'\phi$$
.

In fact, if the systems are isomorphic by an isomorphism ϕ , then for every $c \in C$ we have

$$\varphi'(\phi c) = \varphi(c) = c \neq 0$$

therefore $\phi c \in C$, and then

$$\varphi'(\phi c) = \phi c$$

consequently $\phi c = c$.

Conversely, let $\phi: \Gamma \to \Gamma'$ be an isomorphism such that $\phi c = c$ for $c \in C$ and $\phi U = U'\phi$. We have to prove that $\varphi = \varphi' \circ \phi$. For $c \in C$ we have $\phi c = c$, therefore

$$\varphi'(\phi c) = \phi c = c = \varphi(c).$$

If $\gamma \notin C$, then $\phi \gamma \notin C$ (since ϕ is injective), therefore $\varphi'(\phi \gamma) = 0$ and $\varphi(\gamma) = 0$, consequently

$$\varphi'(\phi\gamma) = \varphi(\gamma).$$

REMARK. If (Γ, U, φ) is a discrete system, we shall say also that (Γ, U) is a discrete system. If (Γ, U_T) is a discrete system and $\Gamma \subset \Gamma(\mu)$, for some transformation T on a measure space (X, Σ, μ) , we understand that $\varphi = \varphi_{\mu}$.

From Proposition 3 it follows that (Γ, U) is a discrete system provided that Γ is an abelian group containing C and $U: \Gamma \to \Gamma$ is an injective homomorphism such that Uc = c for $c \in C$.

For certain discrete models (Γ, U) isomorphism does no more involve homomorphisms U either:

THEOREM 4. Let (Γ_1, U_1) and (Γ_2, U_2) be two discrete systems and put

$$w_i(\gamma) = U_i \gamma \cdot \gamma^{-1}, \text{ for } \gamma \in \Gamma_i, \quad i = 1, 2.$$

Suppose that

$$\gamma \in \Gamma_i$$
 and $w_i(\gamma) = 1$ imply $\gamma \in C$, $i = 1, 2$.

Then (Γ_1, U_1) and (Γ_2, U_2) are isomorphic, if and only if the groups $w_1\Gamma_1$ and $w_2\Gamma_2$ are isomorphic by an isomorphism ϕ such that $\phi w_1 = w_2 \phi$ and $\phi c = c$ for $c \in C \cap w_1\Gamma_1$.

If (Γ_1, U_1) and (Γ_2, U_2) are isomorphic by means of an isomorphism $\phi \colon \Gamma_1 \to \Gamma_2$ such that

$$\phi U_1 = U_2 \phi$$
 and $\phi c = c$ for $c \in C$,

then we have also

$$\phi w_1 = w_2 \phi.$$

From $\phi\Gamma_1 = \Gamma_2$ we deduce then $\phi w_1\Gamma_1 = w_2\Gamma_2$. The restriction of ϕ to $w_1\Gamma_1$ is the required isomorphism.

Conversely, suppose that $w_1\Gamma_1$ and $w_2\Gamma_2$ are isomorphic by means of an isomorphism $\phi: w_1\Gamma_1 \to w_2\Gamma_2$ such that $\phi w_1 = w_2\phi$ and $\phi c = c$ for $c \in C \cap w_1\Gamma_1$.

By Proposition 2 there exists an injective homomorphism $a \to \gamma_a$ of $w_1\Gamma_1$ into Γ_1 such that $w_1(\gamma_a) = a$ for $a \in w_1\Gamma_1$; then $\Gamma_1 = C \cdot \Gamma_1'$ (direct product) where $\Gamma_1' = \{\gamma_a; a \in w_1\Gamma_1\}$.

Consider the groups $G_1 = w_1^2 \Gamma_1$ and $G_2 = w_2^2 \Gamma_2$. Since $\phi w_1 \Gamma_1 = w_2 \Gamma_2$ and $\phi w_1 = w_2 \phi$ we have $G_2 = \phi G_1$.

If $a \in G_1$ then $w_1(\gamma_a) = a$ and $a = w_1(b)$ for some $b \in w_1\Gamma_1$, therefore $\gamma_a = cb$ for some $c \in C$; if we have also $\gamma_a = c_1b_1$ with $c_1 \in C$ and $b_1 \in w_1\Gamma_1$, then $c\bar{c}_1 = b_1b^{-1} \in w_1\Gamma_1$, therefore, by hypothesis,

$$c\bar{c}_1 = \phi(c\bar{c}_1) = \phi(b_1)\overline{\phi(b)},$$

whence $c\phi b = c_1\phi b_1$. We define then unambiguously

$$\gamma_{\phi a} = c\phi b$$
, if $\gamma_a = cb$ with $c \in C$ and $b \in w_1\Gamma_1$.

It is easy to see that $\phi a \to \gamma_{\phi a}$ is an injective homomorphism of G_2 into Γ_2 such that $w_2(\phi a) = \phi a$. By Proposition 2, this homomorphism can be extended to an injective homomorphism $a \to \gamma_a$ of $w_2\Gamma_2$ into Γ_2 such that $w_2(\gamma_a) = a$ for $a \in w_2\Gamma_2$.

We extend now ϕ from $w_1\Gamma_1$ to Γ_1 by

$$\psi c \gamma_a = c \gamma_{\phi a}$$
 for $c \in C$ and $a \in w_1 \Gamma_1$.

 ψ is an extension of ϕ , since if $b \in w_1\Gamma_1$, then $b = c\gamma_a$ for some $c \in C$ and $a \in w_1\Gamma_1$, whence $a = w_1(\gamma_a) = w_1(b) \in w_1^2\Gamma_1$ and $\gamma_a = \bar{c}b$, therefore $\gamma_{\phi a} = \bar{c}\phi b$; it follows then that $\phi b = c\gamma_{\phi a} = \psi(c\gamma_a) = \psi b$.

Moreover, ψ is an isomorphism of Γ_1 onto Γ_2 and $\psi c = c$ for $c \in C$. Finally, if $c \in C$ and $\gamma_a \in \Gamma_1'$, we have

$$\psi U_1 c \gamma_a = \psi c a \gamma_a = \psi a \cdot \psi c \gamma_a = \phi a \cdot c \gamma_{\phi a} = U_2 c \gamma_{\phi a} = U_2 \psi c \gamma_a$$

therefore $\psi U_1 = U\psi_2$. By Theorem 3, (Γ_1, U_1) and (Γ_2, U_2) are isomorphic.

For transformations with discrete models we have the following characterization:

THEOREM 5. A measure preserving transformation T on a probability measure space (X, Σ, μ) has a discrete model if and only if there exists a set $\Gamma' \subset \Gamma(\mu)$ such that

- (a) Γ' is a group;
- (b) Γ' is an orthonormal basis of $L^2(\mu)$;
- (c) $U_{\tau}\Gamma' \subset C\Gamma'$.

We remark first that if Γ' is a group and an orthonormal basis in $L^2(\mu)$, then Γ' contains no constant function except 1, so that $C \cdot \Gamma'$ is a direct product.

If conditions a, b and c are satisfied, then $(C \cdot \Gamma', U_T, \varphi_\mu)$ is a discrete algebraic model for T. In fact, $C \subset C \cdot \Gamma'$ and $C \cdot \Gamma'$ generates $L^2(\mu)$; if $c \in C$, then

$$\varphi_{\mu}(c) = \int c \ d\mu = c$$

while if $\gamma \notin C$, then $\gamma = c \cdot \gamma'$ for some $c \in C$ and $\gamma' \in \Gamma'$ with $\gamma' \neq 1$, therefore

$$\varphi_{\mu}(\gamma) = c \int \gamma' d\mu = c(\gamma'|1) = 0.$$

Conversely, let (Γ, U, φ) be a discrete algebraic model for T; we may suppose $\Gamma \subset \Gamma(\mu)$, $U = U_T$ and $\varphi = \varphi_{\mu}$. Write Γ as a direct product $\Gamma = C \cdot \Gamma'$, where Γ' is a subgroup of Γ , containing no constant function except 1. Finally, Γ' is an orthonormal system, since for $\gamma' \in \Gamma'$ we have

$$\int \gamma' d\mu = \varphi(\gamma') = 1 \quad \text{if } \gamma' = 1,$$
$$= 0 \quad \text{if } \gamma' \neq 1.$$

COROLLARY. If G is an abelian compact group, equipped with Haar measure μ , then continuous automorphisms τ' and rotations R on G, as well as their superpositions $\tau = R\tau'$, have discrete model.

We remark first that continuous automorphisms τ' and rotations R, therefore, their superpositions $\tau = R\tau'$, are measure preserving.

The group of characters $\Gamma' = G^{\hat{}}$ is an orthogonal system in $L^2(\mu)$ and $U_{\tau'}\Gamma' \subseteq \Gamma'$; if R is defined on G by Rx = cx, for some $c \in G$, then

$$U_{\tau}\gamma(x) = \gamma(\tau x) = \gamma(c)\gamma(\tau' x) = \gamma(c)U_{\tau'}\gamma(x)$$

for every $\gamma \in \Gamma'$, therefore $U_{\tau}\Gamma' \subset C \cdot \Gamma'$. By Theorem 5, τ has discrete model. Conversely:

Theorem 6. Every invertible measure preserving transformation T, with discrete model (Γ, U_T) , on a probability measure space (X, Σ, μ) , is conjugate to the superposition of a continuous automorphism and a rotation on an abelian compact group, equipped with Haar measure.

Consider $\Gamma = C \cdot \Gamma'$ (direct product) and

$$U_{TY} = \rho(\gamma)V\gamma$$
, for $\gamma \in \Gamma'$

where ρ is a character of Γ' and V is an injective homomorphism of Γ' . Since T is invertible, we have $U_T L^2(\mu) = L^2(\mu)$, therefore $V\Gamma' = \Gamma'$. Consider Γ' endowed with the discrete topology and consider the Haar measure ν on the abelian compact group $G = \Gamma'$. Then $\rho \in G$. We define the continuous homomorphism τ' on G by

$$\langle \tau' x, \gamma \rangle = \langle x, V \gamma \rangle$$
, for $x \in G$ and $\gamma \in \Gamma'$.

Since $V\Gamma' = \Gamma'$, τ' is an automorphism. Consider finally the mapping $\tau: G \to G$ defined by

$$\tau(x) = \rho \tau'(x), \text{ for } x \in G.$$

Then $(C \cdot G^{\hat{}}, U_t)$ is a discrete model for τ , and the mapping $\phi \colon C \cdot \Gamma' \to C \cdot G^{\hat{}}$ defined by

$$\phi c \gamma = c \langle \cdot, \gamma \rangle$$
, for $c \in C$ and $\gamma \in \Gamma'$

is an isomorphism such that $\phi c = c$ for $c \in C$. Moreover, for $\gamma \in \Gamma'$ we have

$$\begin{split} \phi U_T \gamma &= \phi \rho(\gamma) V \gamma = \rho(\gamma) \langle \cdot, V \gamma \rangle \\ &= \rho(\gamma) \langle \tau' \cdot, \gamma \rangle = \langle \rho \tau' \cdot, \gamma \rangle = \langle \tau \cdot, \gamma \rangle \\ &= U_\tau \langle \cdot, \gamma \rangle = U_\tau \phi \gamma \end{split}$$

and this equality remains valid for $\gamma \in \Gamma$, therefore $\phi U_T = U_t \phi$. By Theorem 3, T and τ are conjugate.

COROLLARY 1. A measure preserving transformation T on a probability measure space (X, Σ, μ) is conjugate to a continuous automorphism on a compact abelian group, equipped with Haar measure, if and only if there exists a set $\Gamma' \subseteq \Gamma(\mu)$ such that

- (a) Γ' is a group;
- (b) Γ' is an orthonormal basis of $L^2(\mu)$;
- (c) $U_T\Gamma' = \Gamma'$.

COROLLARY 2. A measure preserving transformation T on a probability measure space (X, Σ, μ) is conjugate to a rotation on an abelian compact group, equipped with Haar measure, if and only if T has a discrete model (Γ, U_T) with $\Gamma \subset \Gamma_1$.

We mention also the following property of discrete models.

PROPOSITION 4. Let T be a measure preserving transformation on a probability measure space (X, Σ, μ) and let $(\Gamma, U_T, \varphi_{\mu})$, $(\Gamma', U_T, \varphi_{\mu})$ be two discrete systems.

If (Γ, U_T, φ_u) is a discrete model for T and if $\Gamma \subset \Gamma'$, then $\Gamma = \Gamma'$.

In fact, let $f \in \Gamma'$. If for every $g \in \Gamma$ we had $fg \notin C$, then

$$\int fg\ d\mu = 0$$

therefore $f \equiv 0$, which would contradict $|f| \equiv 1$.

It follows that there exists $g \in \Gamma$ with $fg \in C$.

Then $f \in \bar{g}C \subseteq \Gamma$, therefore $\Gamma' = \Gamma$.

5. Ergodic transformations. In this section we give some characterizations of ergodic transformations by means of their algebraic models.

Let (X, Σ, μ) be a probability measure space and $T: X \to X$ a measure preserving transformation. The transformation T is ergodic if $f \in L^2(\mu)$ and $U_T f = f$ imply f = constant.

PROPOSITION 5. If T is ergodic, then $(\Gamma_1(T), U_T)$ is a discrete system.

In fact if $\gamma \in \Gamma_1(T) - C$, then $U_T \gamma = c \gamma$ for some $c \neq 1$ (because T is ergodic), therefore

 $\int \gamma \, d\mu = \int U\gamma \, d\mu = c \int \gamma \, d\mu$ $\int \gamma \, d\mu = 0.$

consequently

REMARKS. 1°. If T^n is ergodic for some n, then T is ergodic, therefore $(\Gamma_1(T), U_T)$ is a discrete system. Theorem 7 below states a somewhat converse property.

2°. We shall see (Corollary 1 of Proposition 6) that if T^n is ergodic for every n, then $(\Gamma_{\infty}(T), U_T)$ is a discrete system.

LEMMA. If T has a discrete model (Γ, U_T) and if $\Gamma_1(T) \subset \Gamma$, then for every natural n we have

$$\Gamma_1(T^n) \cap \Gamma = \Gamma_1(T).$$

Consider $\Gamma = C \cdot \Gamma'$, where Γ' is a group and an orthonormal basis of $L^2(\mu)$. Consider the homomorphisms $\rho_n \colon \Gamma' \to C$ and $V \colon \Gamma' \to \Gamma'$ such that $U_T^n \gamma = \rho_n(\gamma) V^n(\gamma)$, for $\gamma \in \Gamma'$.

Let $\gamma \in \Gamma_1(T^n) \cap \Gamma'$. Then $U_T^n \gamma = c \gamma$, for some $c \in C$, therefore $\rho_n(\gamma) = c$ and $V^n \gamma = \gamma$. Let $k \leq n$ be the least natural number such that $V^k \gamma = \gamma$ and consider the k-dimensional space K generated by γ , $V\gamma$, ..., $V^{k-1}\gamma$. Then K is invariant under U_T , therefore there exists a basis f_1, \ldots, f_k of K consisting of proper functions of U_T :

$$U_{\tau}f_i = c_i f_i$$
, with $c_i \in C$.

Then $f_i \in \Gamma_1(T) \subset \Gamma$. Moreover, we may take $f_i \in \Gamma'$ (multiplying each f_i by a suitable number of C). The basis (f_1, \ldots, f_k) must then coincide with the basis $(\gamma, V\gamma, \ldots, V^{k-1}\gamma)$; for example $f_1 = \gamma$, therefore $U_T\gamma = c_1\gamma$.

It follows that $\gamma \in \Gamma_1(T)$, therefore $\Gamma_1(T^n) \cap \Gamma' \subset \Gamma_1(T)$, consequently $\Gamma_1(T^n) \cap \Gamma \subset \Gamma_1(T)$.

The converse inclusion follows from $\Gamma_1(T) \subset \Gamma_1(T^n)$.

THEOREM 7. Suppose that T has a discrete model (Γ, U_T) and let n be a natural number. If:

- (a) either $\Gamma \subset \Gamma_1(T)$, or $\Gamma_1(T) \subset \Gamma$;
- (b) $\gamma \in \Gamma$ and $U_T^n \gamma = \gamma$ imply $\gamma \in C$; then T^n is ergodic.

Let $f \in L^2(\mu)$ be a function such that $U_T^n f = f$ and prove that f is constant. Consider $\Gamma = C \cdot \Gamma'$, where Γ' is a group and an orthonormal basis of $L^2(\mu)$. Then

$$f = \sum_{\gamma \in \Gamma'} \alpha(\gamma) \gamma$$

where

$$\alpha(\gamma) = \int f \bar{\gamma} \ d\mu$$
, for every $\gamma \in \Gamma'$.

For every natural number $k \in N$ we have

$$U_T^{kn}f = f$$

and

$$U_T^{kn}f = \sum_{\gamma \in \Gamma'} \alpha(\gamma) \rho_{kn}(\gamma) V^{kn} \gamma$$

therefore

$$\alpha(V^{kn}\gamma) = \alpha(\gamma)\rho_{kn}(\gamma)$$
, for $k \in N$ and $\gamma \in \Gamma'$,

whence

$$|\alpha(V^{kn}\gamma)| = |\alpha(\gamma)|$$
, for $k \in N$ and $\gamma \in \Gamma'$.

We shall prove that for every element $\gamma \neq 1$ of Γ' we have $\alpha(\gamma) = 0$. Let therefore $\gamma \in \Gamma'$ be such that $\gamma \neq 1$.

If $V^{kn}\gamma = \gamma$ for some k, then $\gamma \in \Gamma_1(T^n)$. In fact, if $\Gamma \subseteq \Gamma_1(T)$, then $\gamma \in \Gamma_1(T^n)$ without any other assumption, while if $\Gamma_1(T) \subseteq \Gamma$, then by the preceding lemma

$$\gamma \in \Gamma_1(T^{kn}) \cap \Gamma = \Gamma_1(T) = \Gamma_1(T^n) \cap \Gamma.$$

Writing now the equality $\alpha(V^{kn}\gamma) = \alpha(\gamma)\rho_{kn}(\gamma)$ for k=1 we obtain

$$\alpha(\gamma) = \alpha(\gamma)\rho_n(\gamma)$$

therefore either $\alpha(\gamma) = 0$ or $\rho_n(\gamma) = 1$. But $\rho_n(\gamma) = 1$ means $U_T^n \gamma = \gamma$, which by hypothesis implies $\gamma = 1$ and we get a contradiction. It follows that $\alpha(\gamma) = 0$.

If $V^{kn}\gamma \neq \gamma$ for every k, then the functions γ , $V^n\gamma$, $V^{2n}\gamma$, are different from each other, therefore

$$\sum_{k=0}^{\infty} |\alpha(V^{kn}\gamma)|^2 \leq \sum_{\gamma' \in \Gamma'} |\alpha(\gamma')|^2 < \infty$$

consequently $|\alpha(V^{kn}\gamma)| \to 0$ as $k \to \infty$, whence $\alpha(\gamma) = 0$.

It follows that $f = \alpha(1)1$, that is f is constant, consequently T^n is ergodic.

REMARKS. 1°. Is it possible to drop condition (a) in the preceding theorem? The answer is positive if condition (b) is satisfied for every n (see Theorem 9 below).

2°. Is it true that if T is ergodic, then $\Gamma_1(T) \subset \Gamma$ for every discrete model (Γ, U_T) of T?

The answer is positive if, in addition, T^n is ergodic for every n. Moreover, in this case we have $\Gamma_{\infty}(T) \subset \Gamma$ for every discrete model (Γ, U_T) of T (see Corollary 2 of Proposition 6).

For ergodic transformations, we have the following conjugacy criterion:

THEOREM 8. Two ergodic transformations T and T' with discrete model, are conjugate if and only if there exist discrete models (Γ, U_T) and $(\Gamma', U_{T'})$ of T and T' respectively, such that the groups $w_T\Gamma$ and $w_{T'}\Gamma'$ are isomorphic by an isomorphism ϕ such that $\phi w_T = w_{T'}\phi$ and $\phi c = c$ for $c \in C \cap w_T\Gamma$.

We use Theorem 4.

6. Transformations with ergodic iterates. Let (X, Σ, μ) be a probability measure space and $T: X \to X$ a measure preserving transformation.

PROPOSITION 6. Suppose that T^n is ergodic for every n. If (Γ, U_T) is a discrete system, then $(\bigcup_{n=0}^{\infty} w_T^{-n}(\Gamma), U_T)$ is again a discrete system.

We prove first that $(w_T^{-1}(\Gamma), U_T)$ is a discrete system.

It is clear that $w_T^{-1}(\Gamma)$ is a subgroup of $\Gamma(\mu)$ invariant under U_T and containing C. We have to prove that

$$\varphi_{\mu}(f) = \int f d\mu = 0$$
, for $f \in W_T^{-1}(\Gamma) - C$.

Let $f \in w_T^{-1}(\Gamma) - C$. There are two possibilities:

(a) $\int U_T^n f \cdot \overline{f} d\mu = 0$, for every $n \ge 1$.

Then f, $U_T f$, $U_T^2 f$, ... is an orthonormal system in $L^2(\mu)$. If g is the projection of 1 on the space generated by this sequence, we have

$$g = \sum_{n=0}^{\infty} a_n U_T^n f$$
 with $\sum |a_n|^2 < \infty$.

Then

$$\int f d\mu = \int U_T^n f d\mu = (U_T^n f | 1) = (U_T^n f | g) = a_n$$

and $a_n \to 0$, therefore $\int f d\mu = 0$.

(b) There exists n such that

$$\int U_T^n f \cdot \bar{f} d\mu \neq 0.$$

Since

$$U_T^n f \cdot \vec{f} = w_T(f \cdot U_T f \cdot \cdot \cdot \cdot U_T^{n-1} f) \in \Gamma$$

and since (Γ, U_T) is a discrete system, we have

$$U_T^n f \cdot \vec{f} \in C$$

that is

$$U_T^n f = cf$$
 for some $c \in C$.

Since f is not constant and T^n is ergodic, we have $c \neq 1$.

Suppose that n is the least natural number satisfying $U_T^n f = cf$. The n-dimensional space K generated by f, $U_T f$, ..., $U_T^{n-1} f$ is invariant under U_T , therefore there exists a basis f_1, \ldots, f_n of K consisting of proper functions of U_T :

$$U_T f_i = c_i f_i$$
, with $c_i \in C$.

Each f_i is of the form

$$f_i = \sum_{k=0}^{n-1} \alpha_{ik} U_T^k f$$

therefore

$$U_T^n f_i = c f_i$$
.

On the other hand

$$U_T^n f_i = c_i^n f_i$$

therefore

$$c_i^n = c$$
, for every i.

Then $c_i \neq 1$ for each i and

$$\int f_i d\mu = \int U_T f_i d\mu = c_i \int f_i d\mu$$

therefore $\int f_i d\mu = 0$. From

$$f = \sum_{i=1}^{n} \alpha_i f_i$$

we deduce that $\int f d\mu = 0$.

By induction we deduce then that for every n, $(w_T^{-n}(\Gamma), U_T)$ is a discrete system, therefore $(\bigcup_{n=0}^{\infty} w_T^{-n}(\Gamma), U_T)$ is also a discrete system.

COROLLARY 1. If T^n is ergodic for every n, then $(\Gamma_{\infty}(T), U_T)$ is a discrete system.

In fact (C, U_T) is a discrete system, and $\Gamma_{\infty}(T) = \bigcup_{n=1}^{\infty} w_T^{-n}(C)$.

COROLLARY 2. Suppose that T has a discrete model (Γ, U_T) . If T^n is ergodic for every n, then

$$w_T^{-1}\Gamma = \Gamma$$
 and $\Gamma_{\infty}(T) \subset \Gamma$.

In fact, in this case $(w_T^{-1}\Gamma, U_T)$ is again a discrete system and $\Gamma \subseteq w^{-1}\Gamma$, therefore, by Proposition 3, $w^{-1}\Gamma = \Gamma$. Then $\Gamma_{\infty}(T) \subseteq \Gamma$.

THEOREM 9. Suppose that T has a discrete model (Γ, U_T) .

If for every natural number n, conditions $\gamma \in \Gamma$ and $U^n \gamma = \gamma$ imply $\gamma \in C$, then T^n is ergodic for every n.

Consider Γ as a direct product $\Gamma = C \cdot \Gamma'$, where Γ' is a group and an orthonormal basis of $L^2(\mu)$.

Consider the homomorphisms $\rho_n \colon \Gamma' \to C$ and $V \colon \Gamma' \to \Gamma'$ such that $U_T^n \gamma = \rho_n(\gamma) V^n \gamma$, for $\gamma \in \Gamma'$ and $n \in N$.

We shall prove first that T is ergodic. Let $f \in L^2(\mu)$ be such that $U_T f = f$ and prove that f is constant. We have

$$f = \sum_{\gamma \in \Gamma'} \alpha(\gamma) \gamma$$

where $\alpha(\gamma) = (f|\gamma)$. For every n we have $U_T^n f = f$ and

$$U_T^n f = \sum_{\gamma \in \Gamma'} \alpha(\gamma) \rho_n(\gamma) V^n \gamma$$

therefore

$$\alpha(V^n \gamma) = \alpha(\gamma) \rho_n(\gamma)$$
, for $\gamma \in \Gamma'$ and $n \in N$

whence

$$|\alpha(V^n\gamma)| = |\alpha(\gamma)|$$
, for $\gamma \in \Gamma'$ and $n \in N$.

We shall prove that $\alpha(\gamma) = 0$ if $\gamma \neq 1$. We remark that the hypothesis implies that if $\gamma \neq 1$, then $\rho_n(\gamma) \neq 1$ for every n.

If $\gamma \neq 1$ and $V^n \gamma = \gamma$ for some n, then the equality $\alpha(V^n \gamma) = \alpha(\gamma) \rho_n(\gamma)$ becomes

$$\alpha(\gamma) = \alpha(\gamma)\rho_n(\gamma)$$

therefore $\alpha(\gamma) = 0$.

If $\gamma \neq 1$ and $V^n \gamma \neq \gamma$ for every n, then the functions γ , $V\gamma$, $V^2\gamma$,... are different from each other, therefore

$$\sum_{n=1}^{\infty} |\alpha(V^n \gamma)|^2 \leq \sum_{\gamma' \in \Gamma'} |\alpha(\gamma')|^2 = ||f||_2^2 < \infty$$

consequently $|\alpha(V^n\gamma)|^2 \to 0$ as $n \to \infty$, whence $\alpha(\gamma) = 0$.

We deduce that $f = \alpha(1)1$, that is f is constant, therefore T is ergodic.

We remark now that for every n, (Γ, U_T^n) is a discrete model for T^n , satisfying the conditions of the theorem with respect to U_T^n , therefore T^n is ergodic.

7. Transformations with quasi-discrete spectrum. Let (X, Σ, μ) be a probability measure space and $T: X \to X$ a measure preserving transformation.

DEFINITION 4. We say that T has quasi-discrete spectrum if T has a discrete model (Γ, U_T) with $\Gamma \subset \Gamma_{\infty}(T)$.

To say that T has quasi-discrete spectrum means that there exists a group $\Gamma' \subset \Gamma_{\infty}(T)$ which is an orthonormal basis of $L^2(\mu)$, such that $U_T \Gamma' \subset C \cdot \Gamma'$.

Here are some properties of transformations with quasi-discrete spectrum:

- (1) If T has quasi-discrete spectrum, then $(\Gamma_{\infty}(T), U_T, \varphi_{\mu})$ is an (not necessarily discrete) algebraic model of T.
- (2) If T has quasi-discrete spectrum, then T^n has quasi-discrete spectrum, for every n (since $\Gamma_{\infty}(T) \subset \Gamma_{\infty}(T^n)$).
- (3) If T is conjugate with a transformation with quasi-discrete spectrum, then T has itself quasi-discrete spectrum (see Proposition 1).
- (4) Two transformations T and T' with quasi-discrete spectrum are conjugate if and only if the a.e. systems $(\Gamma_{\infty}(T), U_T, \varphi_{\mu})$ and $(\Gamma_{\infty}(T'), U_{T'}, \varphi_{\mu'})$ are isomorphic.

We use Proposition 1 and Theorem 1.

For transformations T for which $(\Gamma_{\infty}(T), U_T)$ is itself a discrete model we have, in addition, the following properties:

(5) Let T and T' be two measure preserving transformations having $(\Gamma_{\infty}(T), U_T)$ respectively $(\Gamma_{\infty}(T'), U_{T'})$ as discrete models.

Then T and T' are conjugate if and only if there exists an isomorphism J of $\Gamma_{\infty}(T)$ onto $\Gamma_{\infty}(T')$ such that

$$Jc = c$$
, for $c \in C$

and

$$JU_T = U_T J$$
.

(6) If T has quasi-discrete spectrum and if there exists a discrete system (Γ^*, U_T) with $\Gamma_{\infty}(T) \subset \Gamma^*$, then $(\Gamma_{\infty}(T), U_T)$ is a discrete model of T and there is no other discrete model of T containing or contained in $(\Gamma_{\infty}(T), U_T)$.

We use Proposition 3.

For transformations with all iterates ergodic we have some more properties:

(7) If T^n is ergodic for every n and if $\Gamma_{\infty}(T)$ generates $L^2(\mu)$, then $(\Gamma_{\infty}(T), U_T)$ is a discrete model of T and there is no other discrete model of T.

In fact, by Corollary 1 of Proposition 6, $(\Gamma_{\infty}(T), U_T)$ is a discrete system, therefore $(\Gamma_{\infty}(T), U_T)$ is a discrete model of T. By Corollary 2 of Proposition 6, for any other discrete model (Γ, U_T) of T we have $\Gamma_{\infty}(T) \subseteq \Gamma$, therefore $\Gamma_{\infty}(T) = \Gamma$.

(8) Let T and T' be two transformations with quasi-discrete spectrum and all iterates T^n and T'^n ergodic.

Then T and T' are conjugate if and only if $w_T\Gamma_{\infty}(T)$ and $w_{T'}\Gamma_{\infty}(T')$ are isomorphic by an isomorphism ϕ such that $\phi w_T = w_{T'}\phi$ and $\phi c = c$ for $c \in C \cap w_T\Gamma_{\infty}(T)$.

We use Theorem 8 and property (5) above.

The following theorem gives a characterization of discrete systems which are models for transformations with quasi-discrete spectrum.

THEOREM 10. If (Γ, U) is a discrete system such that

$$\Gamma = \bigcup_{n=0}^{\infty} w^{-n}(C)$$
, where $w(\gamma) = U\gamma \cdot \gamma^{-1}$, for $\gamma \in \Gamma$,

then the corresponding transformation T has quasi-discrete spectrum.

If, in addition, for every natural number $n \in N$, $\gamma \in \Gamma$ and $U^n \gamma = \gamma$ imply $\gamma \in C$, then T^n is ergodic for every n.

In fact w is the restriction of w_T to Γ , therefore $\Gamma \subset \Gamma_{\infty}(T)$, consequently T has quasi-discrete spectrum.

For the second part of the theorem we use Theorem 9 to deduce that all the iterates T^n are ergodic. In this case we have $\Gamma = \Gamma_{\infty}(T)$.

REMARK. Theorem 10 and property (8) were proved by Abramov [1].

Example of transformation with discrete model but without quasi-discrete spectrum. Let $X_n = \{-1, 1\}$ and $\mu_n(\{-1\}) = \mu_n(\{1\}) = \frac{1}{2}$ for $n = 0, \pm 1, \pm 2, \ldots$ Consider the product $X = \prod_{n=-\infty}^{\infty} X_n$, equipped with the product measure μ and the bilateral shift $T(x_n) = (y_n)$, where $y_n = x_{n+1}$ for every n. Then T^n is ergodic for every n and the only proper value of T is 1, so that $w_T^{-1}(C) = C$. It follows that $\Gamma_{\infty}(T) = C$ so that T has not quasi-discrete spectrum.

On the other hand, consider the function $f_0: X \to R$ defined by

$$f_0((x_n)) = -1$$
 if $x_0 = -1$,
= 1 if $x_0 = 1$,

and the group Γ generated by $U_T^n f_0$, $n=0, \pm 1, \pm 2, \ldots$ and by the constants. Then (Γ, U_T) is a discrete model of T.

8. Transformations with discrete spectrum. Let (X, Σ, μ) be a probability measure space and $T: X \to X$ a measure preserving transformation.

DEFINITION 5. We say that T has discrete spectrum if T has a discrete model (Γ, U_T) with $\Gamma \subset \Gamma_1(T)$.

To say that T has a discrete spectrum means that there exists a group $\Gamma' \subset \Gamma_1(T)$ of proper functions of U_T which is an orthonormal basis of $L^2(\mu)$.

Here are some properties of transformations with discrete spectrum:

- (1) Every transformation with discrete spectrum is invertible (since $U_T\Gamma_1 = \Gamma_1$).
- (2) A transformation has discrete spectrum if and only if it is conjugate to a rotation on a compact abelian group equipped with Haar measure (see Corollary 2 of Theorem 6).
 - (3) Every transformation with discrete spectrum has quasi-discrete spectrum.
- (4) If T has discrete spectrum, then $(\Gamma_1(T), U_T, \varphi_\mu)$ is an (not necessarily discrete) algebraic model of T.
 - (5) If T has discrete spectrum, then T^n has discrete spectrum for every n.
- (6) If T is conjugate with a transformation with discrete spectrum, then T has itself discrete spectrum.
- (7) Two transformations T and T' with discrete spectrum are conjugate if and only if the a.e. systems $(\Gamma_1(T), U_T, \varphi_\mu)$ and $(\Gamma_1(T'), U_{T'}, \varphi_{\mu'})$ are isomorphic.

Transformations T for which $(\Gamma_1(T), U_T)$ is itself a discrete model, have additional properties:

(8) Let T and T' be two measure preserving transformations having $(\Gamma_1(T), U_T)$ respectively $(\Gamma_1(T'), U_{T'})$ as discrete models. Then T and T' are conjugate if and only if there exists an isomorphism J of $\Gamma_1(T)$ onto $\Gamma_1(T')$ such that:

$$Jc = c$$
, for $c \in C$

and

$$JU_T = U_{T'}J.$$

(9) If T has discrete spectrum and if there exists a discrete system (Γ^*, U_T) with $\Gamma_1(T) \subset \Gamma^*$ then $(\Gamma_1(T), U_T)$ is a discrete model of T, and there is no other discrete model of T containing or contained in $(\Gamma_1(T), U_T)$.

For ergodic transformations we have some more properties:

- (10) If T is ergodic and if $\Gamma_1(T)$ generates $L^2(\mu)$, then $(\Gamma_1(T), U_T)$ is a discrete model of T, and there is no other discrete model containing or contained in $(\Gamma_1(T), U_T)$.
 - (11) Let T and T' be two ergodic transformations with discrete spectrum.

Then T and T' are conjugate if and only if U_T and $U_{T'}$ have the same spectrum [4, p. 46].

We use Theorem 8 remarking that $w_T\Gamma_1(T)$ is the spectrum of U_T and $w_{T'}\Gamma_1(T')$ is the spectrum of T'.

The characterization of discrete systems which are models for transformations with discrete spectrum, is given by the following:

THEOREM 11. If (Γ, U) is a discrete system such that

$$w^{-1}(C) = \Gamma$$
, where $w(\gamma) = U\gamma \cdot \gamma^{-1}$, for $\gamma \in \Gamma$

then the corresponding transformation T has discrete spectrum.

If, in addition, there exists $n \in N$ such that $\gamma \in \Gamma$ and $U^n \gamma = \gamma$ imply $\gamma \in C$, then T^n is ergodic.

In fact, w is the restriction of w_T to Γ , therefore $\Gamma \subset \Gamma_1(T)$, consequently T has discrete spectrum. The second part follows from Theorem 9. In this case we have $\Gamma = \Gamma_1(T)$.

When does Γ_1 coincide with Γ_{∞} ?

THEOREM 12. Let T be an ergodic transformation with discrete spectrum, on a probability measure space (X, Σ, μ) . We have $\Gamma_1(T) = \Gamma_{\infty}(T)$ if and only if the point spectrum of U_T contains no root of 1 (except 1 itself).

Suppose first that $\Gamma_1 = \Gamma_{\infty}$. Let ξ be a proper value of a function $f \in \Gamma_1$:

$$U_T f = \xi f$$
.

We shall prove that if $\xi^n = 1$ for some n, then $\xi = 1$. In fact, suppose that N is the least natural number with $\xi^N = 1$. We have then

$$U_T f^N = f^N$$

therefore, (since T is ergodic) f^N is constant, and we may suppose that $f^N \equiv 1$, multiplying f by a suitable number, if necessary. Then f takes on the values $1, \xi, \ldots, \xi^{N-1}$ on the corresponding sets $A_0, A_1, \ldots, A_{N-1}$

$$f = \sum_{k=0}^{N-1} \xi^k \varphi_{A_k}.$$

Since $f(Tx) = \xi f(x)$, we have

$$\sum_{k=0}^{N-1} \xi^k \varphi_{T^{-1} A_k} = \sum_{k=0}^{N-1} \xi^{k+1} A_k$$

therefore $TA_k = A_{k+1}$ for k = 0, 1, ..., N-1, where $A_N = A_0$. It follows that $\mu(A_k) = \mu(A_0) > 0$ for every k.

If N is odd we take ν such that $\nu^N = 1$; if N is even, we take ν such that $\nu^N = -1$. Define now the function

$$g = \sum_{k=0}^{N-1} v^k \xi^{k(k-1)/2} \varphi_{A_k}.$$

Then we have

$$Ug = \nu fg$$
.

If fact, if $x \in A_k$ and k = 0, 1, ..., N-2, we have $Tx \in A_{k+1}$, therefore

$$Ug(x) = g(Tx) = \nu^{k+1} \xi^{k(k+1)/2} = \nu \xi^k \nu^k \xi^{k(k-1)/2} = \nu f(x) g(x)$$

and for $x \in A_{N-1}$ we have $Tx \in A_N = A_0$, therefore

$$Ug(x) = g(Tx) = 1 = \nu^N \xi^{N(N-1)/2} = \nu \xi^{N-1} \nu^{N-1} \xi^{(N-1)(N-2)/2} = \nu f(x)g(x)$$

since $\xi^{N(N-1)/2}$ is equal to 1 if N is odd and to -1 if N is even.

It follows that $g \in \Gamma_2 = \Gamma_1$, therefore $\nu f = \alpha \in C$, consequently $f \in C$. We deduce then that Uf = f, therefore $\xi = 1$.

Conversely, suppose that $\Gamma_1 \neq \Gamma_2$ and prove that U_T has at least a proper value $\alpha \neq 1$ such that $\alpha^N = 1$ for some N.

Let $g_0 \in \Gamma_2 - \Gamma_1$. Since Γ_1 is an orthonormal basis of $L^2(\mu)$ and $g_0 \neq 0$, there exists $h \in \Gamma_1$ such that

$$(g_0,\bar{h})=\int g_0h\ d\mu\neq 0.$$

If we put $g = g_0 h$, we have $g \in \Gamma_2 - \Gamma_1$ and $\int g \ d\mu \neq 0$. There exists a function $f \in \Gamma_1$ such that

$$U_Tg = fg$$
.

There exists also a number $\lambda \in C$ such that

$$U_T f = \lambda f$$
.

By induction, we deduce that for every n we have

$$U_T^n g = \lambda^{n(n-1)/2} f^n g.$$

We have $f^n \in C$ for some n. In fact, if we had $f^n \notin C$ for every n, then (since $f^n \in \Gamma_1$),

$$\int U_T^n g \bar{g} \ d\mu = \lambda^{n(n-1)/2} \int f^n \ d\mu = 0$$

therefore, the sequence g, Ug, U^2g, \ldots would be orthonormal, consequently

$$\int g d\mu = \int U_T^n g d\mu = (U_T^n g, 1) \rightarrow 0$$

and we would get a contradiction.

Let N be the least integer ≥ 0 such that

$$f^N = \mu \in C$$
.

Then

$$U^Ng = \lambda^{N(N-1)/2}\mu g = \xi g.$$

We have

$$\xi \int g \ d\mu = \int U_T^n g \ d\mu = \int g \ d\mu \neq 0$$

therefore $\xi = 1$, consequently

$$U^Ng=g.$$

Since g is not constant and since Γ_1 generates $L^2(\mu)$, there exists a proper function $k \neq 1$ of Γ_1 such that $(g, k) \neq 0$. If α is the corresponding proper value:

$$U_{T}k = \alpha k$$

we have $\alpha \neq 1$ and

$$(g, k) = (U^{N}g, k) = (g, U^{-N}k) = (g, \alpha^{-N}k) = \alpha^{N}(g, k)$$

therefore $\alpha^N = 1$.

BIBLIOGRAPHY

- 1. L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 513-530. (Russian)
- 2. N. Dinculeanu and C. Foias, A universal model for ergodic transformations on separable measure spaces, Michigan Math. J. 13 (1966), 109-117.
 - 3. ----, Algebraic models for measures, Illinois J. Math. 12 (1968), 340-351.
- 4. C. Foiaş, Automorphisms of compact abelian groups, as models for measure-preserving transformations, Michigan Math. J. 13 (1966), 349-352.
 - 5. P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan, No. 3, Tokyo, 1956.
- 6. A. Ionescu Tulcea and C. Ionescu Tulcea, On the lifting property. I, J. Math. Anal. Appl. 3 (1961), 537-546.
 - 7. K. Jacobs, Lecture notes on ergodic theory, Aarhus Universitet, Aarhus, 1962/1963.

University of Bucarest, Bucarest, Romania